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Transport and Diffusion in a Random Medium

Noel Corngold1
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We consider particle transport in a spatially random medium, the transport
governed by the traditional, linear, time- and space-dependent transport equa-
tion for “host and guest.” The scattering is elastic and isotropic; there is no
absorption. If the host medium has uniform density we know that an initial
burst will, in time, approach the solution to the time-dependent diffusion equa-
tion. In the case of random medium we find that for a large class of such
media the asymptotic behavior is unchanged by the stochasticity; there is nei-
ther renormalization of the equation nor the diffusion co-efficient.The nature
of the correlation between fluctuations of density at large separation plays an
important role in the analysis.
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1. INTRODUCTION

This essay is concerned with particle transport and diffusion in a loss-less
random medium, transport being described by the “one-speed transport
equation” with isotropic scattering. The host medium is random in that its
local density is described by a probability distribution that is stationary.
There is no flow of material. One might imagine an experiment in which
particles are released at the origin in a burst and, encountering an irregu-
lar, but static distribution of scatterers, diffuse to infinity. The experiment
is repeated, but now the distribution of scatterers are different . . .and so
on. We are interested in averages with respect to the ensemble of distribu-
tions encountered and, in particular, in the “asymptotic” (distant in space
and time) behavior of the averaged particle distribution. Does it obey the
diffusion equation? If so, with what diffusion coefficient? Our most inter-
esting conclusion is that for a large class of densities not only does the
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particle distribution satisfy the diffusion equation, but the coefficient is
that appropriate to the mean density of the scatterers. Fluctuations about
the mean have no effect upon the asymptotic behavior; there is no “ren-
ormalization.” We point out that should one replace the transport equa-
tion by a different model – a diffusion equation with stochastic diffusion
coefficient – the results are quite different.

The subject of transport in stochastic media has received consider-
able attention in the last several decades. Work prior to 1991 is described
in Pomraning’s pioneering monograph.(1) Less accessible is the impor-
tant monograph by Stepanov.(2) For recent activity one might consult the
work of Akcasu and Williams,(3) Larsen,(4) Prinja,(5) and Williams.(6) And
the interested reader might consult the earlier, impressive reviews by van
Beijeren(7) and by Spohn(8). In these the authors point to results similar
to ours, for different Lorentz models. For wave propagation see Frisch.(16)

2. ANALYSIS

To quote J.B. Keller,(9) “A random medium is a family of media, each
labeled by one value of α . . . a parameter which ranges over a space A in
which a probability density p(α) is defined. The probability density p(α)
determines the probability of a given value of α and therefore of the corre-
sponding (transport) equation of the family.” We will write the host density as

n(x,α) = n0n̂(x, α)=n0(1+ ε θ(x,α)). (1)∫ ∞

−∞
dα p(α)θ(x,α)=0,

and treat only variations and solutions which depend upon a single spa-
tial variable. We also do not pay much attention to details of p(α) and
θ(x,α). Concern about n(x,α) assuming non-physical – i.e., negative-val-
ues is responded to in the final condition that our results be “physical.”
We seek the particle distribution evolving, in time, from an initial burst.
Most interesting to us is the asymptotic diffusion of the particles, which
is expected to follow the traditional time-dependent diffusion equation. To
help us we will re-write the transport equation as a “generalized diffu-
sion equation” for the angle-integrated distribution. Thus we will be using
the language and technique of the “projection operator formalism.”(10,11)

After a limiting process, the “asymptotic” equation will be characterized
by a (renormalized?) diffusion co-efficient D(ε, . . . ), and we ask: How does
the final diffusion reflect, or capture, the nature and degree of the random-
ness? We shall see that, in fact, for a large family of fluctuations the diffu-
sion constant is unchanged “to all orders of ε.”
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We limit ourselves to distributions which depend only upon one spa-
tial variable, and one velocity variable vx = vµ. The scattering is elastic
and isotropic. In terms of dimension-less variables x = x′

�
, t = v

�
t ′, where

the primed variables are the “physical” ones and v, � are the speed and
mean-free-path, we have

∂F

∂t
+µ∂F

∂x
+ n̂(x, α) F (x,µ, t, α)= n̂(x, α)

∫ 1

−1

dµ

2
F(x,µ, t, α),

or

∂F

∂t
+µ∂F

∂x
+ n̂(x, α) QF(x,µ, t, α)=0, (2)

where, for convenience, we have introduced the projection operators, P =
1
2

∫ 1
−1 dµ and Q= 1 − P , PQ=QP = 0. The mean free path is �, is =

1
n0σ

, and the densities will be sampled from some universe of acceptable
functions, labeled by α. One should note that while the length and time
scales we have introduced appear to be “natural” to the transport equa-
tion, variations in the perturbed density θ(x) may be expected to introduce
another scale of variation. (Of course, in the static problem the varying
density may be removed in favor of an “optical depth,” the subsequent
analysis being quite different.) Finally, the equation we have written is
source-less; we are thinking in terms of an initial-value-problem, an initial
“burst” whose angular distribution is isotropic. And we do not adhere to
the structure of rigorous mathematical proof; we merely compute and find
a noteworthy result.

2.1. Preliminary Calculation

Since we will be using the calculus of projection operators through-
out, it may be useful to begin with an instructive example, the con-
struction of a generalized diffusion equation for the density F0(x, t, α)≡
P F(x,µ, t, α). We write Eq. (2) as

∂F
∂t

+L(α)F (x,µ, t, α)=0,

L(α)F (x,µ, t, α)≡µ∂F
∂x

+ n̂(x, α)QF(x,µ, t, α), (3)

L0F(x,µ, t, α)≡µ∂F∂x +QF(x,µ, t, α)
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We begin with Eq. (3), operating on it with P and Q in turn, then
eliminating QF , to obtain the formal expression

(
∂

∂t
+PL

)
PF −PL 1

∂
∂t

+QL
QL PF =0. (4)

Now if one notes that

PL P()=0, PL ()=Pµ ∂

∂x
()= ∂

∂x
Pµ(), LP ()=µ ∂

∂x
()

one obtains the generalized diffusion equation,

∂

∂t
F0(x, t, α)− ∂

∂x
P

{
µ

1
∂
∂t

+QL(α)µ
}
∂

∂x
F0(x, t, α)=0 (5)

the quantity P {. . . } being a linear operator, Dα, operating on the x and
t variables and whose features need discussion. (We will drop the label
α, unless it is relevant to the discussion.) The “diffusion” is non-local in
space and time. Eq. (5) is entirely equivalent to the time-dependent equa-
tion of traditional transport theory.(12)

Dα may be calculated easily in the case of uniform density. (See
Appendix A.) Then, the usual Fourier–Laplace transformation puts Eq. (5)
into the form

[s+ D̃(k, s)k2] F̃0(k, s)=1, (6)

in the case of an initial, isotropic burst of unit strength centered at x=0.
Here F̃0(k, s) is the transform of F0(x, t) and

D exp(st+ ikx)= D̃(k, s) exp(st+ ikx).

In this case we find

D̃(k, s)=
〈
µ2

d

〉
−

〈
µ
d

〉2
〈

1
d

〉 . (7)

=�2 − �2
1

�
. (7a)
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In this tidy expression P has been replaced by the “averaging symbol”
〈. . . 〉, a change in notation which, with apologies to the reader, we make
occasionally in the interest of clarity. Further, d = d(k,µ, s) = 1 + s +
ikµ and the �-symbols, which will prove helpful, are functions of (k, s),
defined through

�m(k, s)=
〈
µm

d

〉
.

Simple relations, such as

(1+ s)�1 + ik�2 =0

ik�1 + (1+ s)�=1 (8a)

connect the symbols; then D̃(k, s)=�2 − �2
1
�

= i
k
�1
�

, and we will encounter
the null combination,

�2 + �2
1

1−� =0 (s=0) (8b)

Equation (6) implies that Eq. (5) may also be written, with a non-
local kernel, D, as

∂

∂t
F0(x, t)− ∂

∂x

∫ ∞

−∞
dx′

∫ t

0
dt ′D(x−x′, t− t ′) ∂

∂x′F0(x
′, t ′)=0, (9)

and that fact brings us to the “Markoffian Limit” (or approximation).
The evolution of the initial burst is complicated. The distribution has

both causal – it has a “front” – and diffusive behavior behind the front.
Two time and space-scales are present, the mean-free-time and space scales
for collision, which are short, and the long time and space scales for
the diffusive evolution of the distribution. Roughly, they are expressed in
the mathematics through contributions from a discrete spectrum (poles)
and a continuous spectrum (branch cuts), the former describing long-time
behavior. More precisely, consider behavior for complex-s and fixed, real
k. Then, a pole, s(k), will describe a “branch,” or generate a dispersion
relation for bulk motion.(13) The accompanying continuum contribution
will describe transient, “high-frequency” behavior. One notices (see Appen-
dix A) that while F̃0(k, s) has poles, D̃(k, s) does not. We use this obser-
vation-along with “physical intuition” to assert that the diffusion kernel
D(x, t) in Eq. (9) indeed relaxes to zero with increase of its arguments at a
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rate much faster than the relaxation of F0(x, t). That is, the diffusion ker-
nel quickly becomes “local.” Carrying this notion to its limit produces the
Markoffian approximation, which may be expressed concisely by writing

D(x−x′, t− t ′)= D̃(k=0, s=0)δ(x−x′)δ(t− t ′). (10)

In that limit d=1, D̃(0,0)= 1
3 , and we retrieve the traditional

∂

∂t
F0(x, t)− 1

3
∂2

∂x2
F0(x, t)=0 (11)

The process leading from Eq. (9) to Eq. (11) connects – as it were –
the mesoscopic with the macroscopic world.

A final issue concerns the manner in which the limits k→ 0, s→ 0
are carried out. While it is true that in some cases, e.g. the Telegrapher’s
equation, whose propagator is (s2 + s+k2)−1, results will depend upon the
process, we will not find it to be the case, here

2.2. Averaging the Irregularities

We wish to discuss the effects of two averagings, or projections. Along
with angle-averaging, noted above, we consider averaging over the solu-
tions with p(α),

∫
dα p(α)=1

and introduce additional projection operators Pα, Qα = (1−Pα),

Pα F(. . . , α)=∫dα p(α)F (. . . , α).

Pα, Qα commute with P, Q, and D, We also have Pαn̂(x, α) =1, so that

Qαn̂(x,α)= ε θ(x,α).

Now we may subject the transport equation, Eq. 3, to the same opera-
tions we sketched above, (see Appendix B) operating, in turn, with Pα and
Qα, then eliminating QαF , to get the equation

(
∂

∂t
+L0

)
〈F 〉α(x,µ, t)− ε2Q	(ε)Q〈F 〉α(x,µ, t)=0, (12)
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for the averaged (projected) distribution. It replaces the original equation

(
∂

∂t
+L0

)
F(x,µ, t, α)+ εθ(x,α)QF(x,µ, t, α)=0. (13)

The operator 	(ε) in Eq. (12) is the complicated object

	(ε) = Pα

[
θ(x,α) 1

∂
∂t

+L0+εQQαθ(x,α)
θ(x, α)

]

= Pα[θ(x,α)G (ε, α)θ(x, α)]
(14)

an operator which acts upon functions of (x,µ, t). Equation (12) in one
form or another may be found throughout the literature – perhaps as
“Dyson’s Equation” in its earliest appearance.(14)

We complete the general discussion first by improving notation, writing

〈F 〉α(x,µ, t)≡ψ(x,µ, t),

then using the angle-averaging operators to reduce Eq. (12) to a general-
ized diffusion equation – in the presence of a “random medium.” We find

∂

∂t
ψ0(x, t)− ∂

∂x
P

{
µ

1
∂
∂t

+Q(L0 − ε2	(ε))
µ

}
∂

∂x
ψ0(x, t) = 0, (15)

an equation which, while compact, is quite complicated. Nevertheless,
we proceed just as we did in the simple case of Eq. (5). We have a
different diffusion operator D(ε), but our assumption of stationary and
homogeneous statistics ensures that again

D(ε) exp(st+ ikx)= D̃(k, s, ε) exp(st+ ikx),

and if a Markoffian limit of the operator-kernel D̃(k, s, ε) exists, it will
provide a “renormalized” diffusion coefficient. The calculations are tedious
but the strategy should be clear.
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2.3. ε-Expansion and Green’s Functions

To make progress one usually assumes that irregularities are small –
that ε�1. One is then led, naturally, to the expansion of

G1(ε)≡ 1
∂
∂t

+Q(L0 − ε2	)
, G(ε, α)= 1

∂
∂t

+L0 + ε QQαθ(x,α)

where

D(ε)≡P {µG1(ε)µ}, 	(ε)=Pα[θ(x,α)G(ε, α)θ(x, α)]

We find

G1(ε)=G1 + ε2G1Q	(ε)G1 + ε4G1Q	(ε)G1Q	(ε)G1 + . . . (16)

with the inverse operators G= 1
∂
∂t

+L0
and G1 = 1

∂
∂t

+QL0
.

As Green’s functions, G and G1 obey
(
∂

∂t
+L0

)
G(x−x′, t− t ′,µ,µ′)= δ(x−x′)δ(t− t ′) δ(µ−µ′) (17)

and
(
∂

∂t
+QL0

)
G1(x−x′, t− t ′,µ,µ′)= δ(x−x′)δ(t− t ′) δ(µ−µ′).

Note that the latter has the interesting feature

∂

∂t
PG1(x, t,µ,µ

′)= 1
2
δ(x)δ(t),

with the particular solution

(PG1)(x, t)= 1
2
δ(x)H(t).

It is natural to conduct our analysis in terms of Fourier–Laplace trans-
forms, whereupon

G̃(k, s,µ,µ′)= 1
2

[
1

1−�(k, s)
1

d(µ)d(µ′)
+ δ(µ−µ′)

{
1

d(µ)
+ 1
d(µ′)

}]

G̃1(k, s,µ,µ
′)= 1

2

[
1
s

1+ ikµ′

�(k, s)

1
d(µ)d(µ′)

+ δ(µ−µ′)
{

1
d(µ)

+ 1
d(µ′)

}]
.

(18)
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Since we will be representing ψ0(x, t) as Fourier–Laplace transforms, cru-
cial to our calculation is the observation that – for arbitrary φ(µ)

1
∂
∂t

+L0
φ(µ)eikx+st = eikx+st

∫ 1

−1
dµ′G̃(k, s,µ,µ′)φ(µ′),

∫ 1

−1
dµ′G̃(k, s,µ,µ′)φ(µ′) = 1

d(k,µ)

[
φ(µ)+ 1

1−�(k,s)
〈

φ
d(k,µ)

〉]
∫ 1

−1
dµ′G̃1(k, s,µ,µ

′)φ(µ′) = 1
d(k,µ)

[
φ(µ)+ 1

s �(k,s)

〈
1+ikµ
d(k,µ)

φ
〉]

(19)

= 1
d(k,µ)

[
φ(µ)+ 1

s �(k,s)

{
〈φ〉− s

〈
φ

d(k,µ)

〉}]

In the future we may abbreviate these equations as

G̃(k) ·φ(µ) = 1
d(k,µ)

[
φ(µ)+ 1

1−�(k)
〈
φ
d(k)

〉]
(20)

G̃1(k) ·φ(µ) = 1
d(k,µ)

[
φ(µ)+ 1

s �(k)

〈
1+ikµ
d(k)

φ
〉]
, etc.

for convenience. (The Laplace variable, s, is implicit.) Should the mean
value of φ vanish, then φ(µ)=Qχ(µ) and we have

G̃(k) ·Qχ(µ) = 1
d(k,µ)

[
χ(µ)− 1

1−�(k)
{
〈χ〉−

〈
χ

d(k)

〉}]
(21)

G̃1(k) ·Qχ(µ) = 1
d(k,µ)

[
χ(µ)− 1

�(k)

〈
χ

d(k)

〉]

Also useful is:

P µG̃1(k) ·φ(µ)=
〈
µφ

d(k)

〉
+ �1

s �
(k)

{
〈φ〉− s

〈
φ

d(k)

〉}
(22)

which, for φ(µ)=Qχ(µ), becomes

P µG̃1(k) ·Qχ(µ)=
〈
µ

d(k)
χ

〉
− �1

�
(k)

〈
1
d(k)

χ

〉
. (23)

The last result produces Eq. (7) immediately upon setting χ(µ)=µ.
Finally,

QG̃(k) ·φ(µ)= 1
d(k,µ)

[
φ(µ) − d−1

1−�(k, s)
〈
φ(µ)

d

〉]
(24)
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which, in the important case, s=0, becomes

QG̃(k) ·φ(µ)= 1
d(k,µ)

[
φ(µ) − µ

�1

〈
φ(µ)

d

〉]
(s=0).

In particular,

QG̃(k) ·µ=0 (s=0) (∗) (25)

These are a few of the results of the “projector-calculus.” Since we
will be concerned with the Markoffian limit, in sequence s→0, then k→0,
we will want the limiting forms of several of the above statements. These
will be quite simple since then, d→ 1,�→ 1, and �1 → 0. And now we
are ready to consider the operator 	(ε).

2.4. The Operator �(ε)

An expansion in ε,

	(ε)=	0 + ε	1 + ε2	2 +· · · ,

is made via expansion of G(ε, α). Then,

G1(ε)=G1 + ε2G1Q	(ε)G1 + ε4G1Q	(ε)G1Q	(ε)G1 +· · · (26)

becomes

G1(ε) =
[
G1 + ε2G1Q(	0 + ε	1 + ε2	2 +· · · )G1

+ε4G1Q	0G1Q	0G1 +· · ·
]

through fourth order. Now,

G(ε, α)= G− ε GQαθ QG + ε2GQαθ Q GQαθQG−· · · (27)

leads to

	0 = 〈θGθ〉α (28)

	1 = 〈θ GQαθ QGθ〉α =〈θ Gθ QGθ〉α
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and

	2 =〈θ GQαθ QGQαθ QGθ〉α =〈θ Gθ QGQαθ QGθ〉α
=〈θ Gθ QGθ QGθ〉α −〈θ Gθ 〉αQGQ〈θ Gθ〉α

(Note that 	2 suggests that we are generating a cumulant expansion rather
than a traditional expansion. This is another appealing feature of the
projection calculus.(15,16))

We will now evaluate the lowest order correction to the diffusion
kernel in some detail. For that we need ...

2.5. The Operator �0

If we use a Fourier representation for θ(x,α) we find

	0 = 1
(2π)2

∫
dk′

∫
dk′′eik

′x〈θ̃ (k′, α)θ̃(k′′, α)〉α 1
∂
∂t

+L0
eik

′′x (29)

We assume that the system is homogeneous, that the fluctuations are no
different in one region than other. Then,

〈θ(x,α)θ(x′, α)〉α =C(x−x′), (30)

and we may take

〈θ̃ (k′, α) θ̃(k′′, α)〉α =2π�(k′)δ(k′ +k′′).

�(k′) and the correlation function C(x) form a Fourier transform
pair. Further, the quantity �(k′) is related to the local “power spectrum”
of the fluctuations through

〈θ2(x, α)〉α = 1
2π

∫
dk′�(k′)=C(0).

(The power spectrum is independent of position.)
Equation (29) then becomes

	0 = 1
2π

∫
dk′�(k′)eik

′x 1
∂
∂t

+L0
e−ik

′x, (31)

	0φ(µ, k, s)e
ikx+st = eikx+st

1
2π

∫
dk′�(k′)G(k−k′, s) ·φ(µ, k, s)

= eikx+st
1

2π

∫
dk′�(k−k′)G(k′ , s) ·φ(µ, k, s), (32)
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G· operating only upon µ.
A word about “modeling” C(x): It is natural to introduce a correla-

tion length, ξ , and to model C(x) as, say

C(x)=C(0)e− |x|
ξ ,

whereupon

�(k)=C(0) 2ξ
1+k2ξ2

.

Then, in the limit of correlation length much larger than mean-free-path
(ξ→∞, homogeneous medium) we have

�(k)→2πC(0)δ(k), (33)

while in the limit of vanishing length (ξ → 0, white-noise, uncorrelated
fluctuations) we would model

C(x)= C0

2ξ
e
− |x|

ξ →C0δ(x)

so as to get

�(k)→ constant=C0 in that limit.

We shall use, exclusively, models for which �(−k)=�(k). And, as a final
comment, remark that our analysis is limited to those realizations, θ(x,α),
and probabilities p(α) for which expressions like Eq. (32) and Eq. (34)
(ahead) are meaningful.

2.6. The Generalized Diffusion Operator, D̃(k,s)

As we have remarked, – see Eq. (6) – all that is interesting in the
relaxation is controlled by D̃(k, s), the transform of D(ε)≡ P {µG(ε)µ},
the non-local diffusion operator. We begin by evaluating it to lowest order
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in ε, using our calculus to get the ε2 contribution,

D(ε) = D0 + ε2
D2 +· · ·

D2 (k, s) = P {µG1Q	0G1µ}
= 1

2π

∫
dk′�(k−k′)P {µG1(k, s) · QG(k′, s) ·G1(k, , s) ·µ}

= 1
2π

∫
dk′�(k−k′)Z(k, k′, s). (34)

The computation of Z is straightforward:

Write φ1(µ, k, s)=G1(k, s) ·µ= 1
d(k,µ)

[
µ− �1

�
(k)

]
, then

φ2(µ, k, k
′, s) = G(k′, s) ·φ1(µ, k, s)

= 1
d(k′,µ)

[
φ1(µ, k)+ 1

1−�(k′)

〈
φ1(k)

d(k′)

〉]
,

and finally

Z = φ3(k, k
′, s)

= P
{
µG1(k, s) ·Qφ2(µ, k, k

′, s)
}

= P
{
µG1(k, s) ·QG(k′, s) ·φ1(µ, k, s)

}

=
〈
µ

d(k)
φ2(k, k

′, s)
〉
− �1

�
(k)

〈
1
d(k)

φ2(k, k
′, s)

〉
. (35)

After some algebra we find the surprisingly compact:

Z=φ3(k, k
′, s)=

〈
1

d2(k) d(k′)
(µ− �1

�
(k))2

〉
+ 1

1−�(k′,s) (�1 − �1

�
(k)�)2

(36)

with �(k, k′, s)=
〈

1
d2(k) d(k′)

〉
and �1(k, k

′, s)=
〈

µ

d2(k)d(k′)

〉
.

3. SOME CONSEQUENCES

3.1. The Markoffian Limit

The limit s→0, k→0 causes �1 to vanish, converts � and �1 to �

and �1 and, by virtue of Eq. (8b) causes Z to vanish. Thus, the diffusion
co-efficient is unchanged to order ε2. Apparently, small fluctuations in
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density do not alter the overall, “gross” co-efficient of diffusion. Restric-
tion on the result may be seen by recalling

lim D̃(k, s)= lim
1

2π

∫
dk′�(k−k′) Z(k, k′, s)

and noting that singular behavior of �(k′) at k′ =0 may spoil the conclu-
sion. This occurs when the area under the auto-correlation curve is infi-
nite, in the case when “uniform dichotomic or N-chotomic” fluctuations,
for example (note Eq. (33)).

While the diffusion equation is unaltered, the fluctuations do affect
the shape of an evolving burst. Consider the second spatial moment. The
usual expansion in k2 combined with Eq. (6) gives the effect of fluctua-
tions upon the (transformed) moment as

δ〈̃x2(s)〉= 2
s2

∫
dk′

2π
�(k′)Z(0, k′, s).

Since Z=φ3 vanishes as s→0, δ<x2(t) > is o(t), and by virtue of the
connection between 2d moment and diffusion coefficient we see again that
the co-efficient is unaltered. Fluctuations affect the second moment mod-
estly over all time scales.

If we are interested only in the Markoffian limit, the calculation
described by Eqs. (34–36) may be simplified considerably for, throughout,
“k” is simply a parameter and, along with “s,” may be set to zero early
in the calculation, thus,

φ1(µ,0,0)=G1(0,0) ·µ=µ,
φ2(µ,0, k

′,0)=G(k′,0) ·φ1(0, k)= 1
d(k′,µ)

[
µ+ �1(k

′)
1−�(k′)

]

Z(0, k′,0)=φ3(0, k
′,0)=P {µ,G1(0,0) ·Qφ2(µ,0, k

′,0)}=〈µφ2〉
=�2 + �2

1

1−� =0. (again Eq. (8b).)

Still simpler, after remarking that φ1(µ,0,0)=G1(0,0) · µ= µ, Eq. (35)
and Eq. (25) imply at once the vanishing of Z(0, k′,0).

3.2. All Orders of ε

If we examine the ε-expansion, we see that this last argument for
the vanishing appears to hold-almost by “easy inspection”– for all orders
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of ε in the expansion. In detail, every term in the expansion of G(ε) =
leads with ...	(ε)G1, while every term in the expansion of 	(ε) leads with
....QGθ〉α. Thus the structure QG(k′)G1 ·µ is omnipresent,and vanishes in
the Markoffian limit. One can accept this term-by-term argument or one
can re-arrange the series, so that one faces a summed operator multiplying
QG(k′, s) G1(k, s)µ. The result, the vanishing, is the same.

4. THE DIFFUSION EQUATION WITH RANDOM COEFFICIENT

Another model one might consider is that of a diffusion equation
whose co-efficient is space-dependent in a random manner. This model is
completely macroscopic, and it will lead to a different conclusion.

Consider the system

∂n

∂t
+ ∂j

∂x
=0 D(x,α)

∂n

∂x
+ j =0

in vector form, with ψ= (
j
n

)
. Then

A
∂

∂t
ψ+AT ψ + E

∂

∂x
ψ + ε θ(x,α)C ∂

∂x
ψ =0

or

L0ψ + ε θ(x,α)C
∂

∂x
ψ=0.

The matrices
E= (1 0

0 1

)
, A = (0 1

0 0

)
, C= (0 0

0 1

)
are trivial, commuting with the projec-

tion (averaging-) operators, Pα and Qα. Now, operating upon the equation
with them, in turn, leads to

L0F(x, t)− ε2C Pα

{
θ
∂

∂x
1

L0 + ε Qθ C
θ

}
C

∂

∂x
F(x, t)=0

with F(x, t)=Pα ψ (x, t, α).
We will simply evaluate the alteration of the diffusion operator to

lowest order. Thus we have the easy computation of

C Pα

{
θ
∂

∂x

1
L0
θ

}
C

∂

∂x
F(x, t).
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With F(x, t)=f (k, s) exp[ikx+ st ] and θ(x, α)=∫ dk′
2π θ̃(k

′, α)eik′x and

1
L0(k, s)

= 1
s+k2

(−ik s

1 −ik
)

and C
1

L0(k, s)
C= −ik

s+k2
C

we obtain

[EL0(k, s)− ε2 ikK(k, s)C]F̃ (k, s)=1.

with

K(k, s)=
∫
dk′

2π
�(k′)

(k+k′)2

s+ (k+k′)2
(37)

(Details of the calculation are presented in Appendix C)
Now, setting the corresponding determinant to zero,

Det [sA+AT + ik E − ε2 ikK(k, s)C] =0

we find

s+{1− ε2 K(k, s)}k2 =0

and its Markoffian counterpart.

s+
{

1− ε2
∫
dk′

2π
�(k′)

}
k

2 =0

or

s+{1− ε2<θ2>}k2 =0,

In this case the diffusion co-efficient is altered. One notes, too, that when “con-
stant statistics,” i.e. very great correlation length, is assumed, so that�(k′)→
2πθ2δ(k′) appears in K(k, s), the subsequent Markoffian result will be ambig-
uous – it will depend upon how the limits (s, k→0) are approached.
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5. LAST COMMENTS

We have analyzed a non-trivial case in the transport of particles in
a medium whose density of scatterers is stochastic. The particles scatter
against host centers isotropically and with no loss of energy, the parti-
cle distribution evolving according to the traditional transport equation.
It is perhaps no surprise that after some time the distribution approaches
a solution to the macroscopic time-dependent diffusion equation. It is a
surprise that the diffusion co-efficient associated with the equation is the
“un-perturbed” or average diffusion co-efficient. There is no renormaliza-
tion. This result is shown in some detail for the leading correction caused
by stochasticity, and a concise argument shows that the result holds in
higher order, term-by-term. (We have nothing much to say about the con-
vergence of the series.) And we note that the result is “model-sensitive” –
a less realistic model may lead to renormalization and ambiguity.

A final comment: one is asked about the effect that the addition of cap-
ture will have on the asymptotics, and the “no-renormalization” result. This is
not simple because – at the very least – a new time scale enters the problem,
and spatial relaxation in the limit is no longer characterized by k→ 0 but by
k→ k0 = i/L where L is the dominant (macroscopic) relaxation length. Since
Lmay depend upon the stochastic features, the analysis is not easy.

APPENDIX A

In the case of an uniform medium L is replaced by L0. To evaluate
the diffusion operator, call

1
∂
∂t

+QL0
µ
∂

∂x
F0(x, t)=E(x,µ, t), whence

∂E

∂t
+Q

[
µ
∂E

∂x
+E(x,µ, t)

]
=µ ∂

∂x
F0(x, t). (A.1)

In terms of Fourier–Laplace transforms, this is

(1+ s+ ikµ)Ẽ(k,µ, s)=P(1+ ikµ)Ẽ(k,µ, s)+ ikµF̃0(k, s), (A.2)

where we have chosen a particular solution (E(t=0)=0).
If, then, we divide Eq. (A2) by d= (1+ s+ ikµ) and average (apply P )

we are led after a little algebra, to Eq. (7).



538 Noel Corngold

The traditional treatment of Eq. (1), with uniform host and isotropic
source yields

F̃0(k, s)= �(k, s)

1−�(k, s) ,

which implies D̃(k, s)= [1− (1+ s)�(k, s)] 1
k2�(k,s)

.

This expression may be seen to be identical with Eq. (7) if we use Eq. (8).

APPENDIX B

Equation (3a) may be written

(
∂

∂t
+L0

)
F(x,µ, t, α)+ εθ(x,α)QF(x,µ, t, α)=0 (B.1)

whence

(
∂

∂t
+L0

)
PαF + ε QPαθ(x,α)QαF =0,

and

(
∂

∂t
+L0

)
QαF + ε QQαθ(x,α)[PαF +QαF ]=0.

Eliminating QαF gives

(
∂

∂t
+L0

)
PαF − ε2Q	(ε)QPαF =0, (B.2)

with

	(ε) = Pα

[
θ(x,α)

1
∂
∂t

+L0 + ε QQαθ(x,α)
θ(x, α)

]
(B.3)

= Pα[θ(x,α) σ (ε, α)θ(x, α)],

a complicated operator which acts on functions of (x,µ, t).
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APPENDIX C

On Eq. 37 from

C Pα { θ(x,α) ∂
∂x

1
L∼0

θ(x, α)}C ∂

∂x
F(x, t). (*)

to

[EL0(k, s)− ε2 ikK(k, s)C]F̃ (k, s)=1.

where

K(k, s)=
∫
dk′

2π
�(k′)

(k+k′)2

s+ (k+k′)2
. (C.1)

Several steps are required. First, recall that F(x, t) is a 2-component vec-
tor, and C is a trivial 2 × 2 matrix, C = (0 0

0 1

)
, a “projector,” having the

properties C2 =C and C
(
a b
c d

)
C = dC. Also, 1

L∼0

is a matrix of operators.

We can use these properties to simplify (*), writing

(∗) =Pα{θ(x, α) ∂
∂x
C

1
L∼0

Cθ(x,α)} ∂

∂x
F (x, t)

(∗) = Pα{θ(x,α) ∂
∂x

L2Cθ(x,α)} ∂

∂x
F (x, t).

with L2 no longer a matrix, but the (2,2) element of the inverse, 1
L∼0

.

To simplify further, we write

(∗)=Pα{θ(x,α) ∂
∂x

L2G(x,α, t)}.=Pα{θ(x,α)H(x,α, t)}

Next, since we are examining the Fourier–Laplace transform, that quantity
is

(
∼∗)= 1

2π

∫
dk′′ Pα{θ̃ (k′′, α) H̃ (k−k′′, α, s)}.

Since H̃ (k, α, s)= ikL2(k, s) G̃(k, α, s) and
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(The exponentials are eigenfunctions of L2, the eigenvalues being L2(k, s)

= −ik
s+k2 .)

G̃(k, α, s) =∫dk′ θ̃ (k−k′, α) i k′CF̃ (k′, s).

Assembling the pieces gives

(
∼∗) = 1

2π

∫
dk′′ Pα {θ̃ (k′′, α)i(k−k′′)L2(k−k′′, s) G̃(k−k′′, α, s)}.

(
∼∗) =

(
1

2π

)2 ∫
dk′′

∫
dk′i(k−k′′)L2(k−k′′, s)Pα {θ̃ (k′′, α)θ̃(k−k′′ −k′, α)}

·{i k′CF̃ (k′, s)}

Since Pα{θ̃ (k′, α)θ̃(k′′, α)}=2π�(k′) δ(k′ +k′′) we have

(
∼∗)= 1

2π

∫
dk′′

∫
dk′i(k−k′′)L2(k−k′′, s)�(k′′) δ(k−k′) i k′CF̃ (k′, s)

(
∼∗)= 1

2π

{∫
dk′′�(k′′) i(k−k′′)L2(k−k′′, s)

}
i k CF̃ (k, s)

(
∼∗)= 1

2π

{∫
dk′′�(k′′) i(k−k′′)L2(k−k′′, s)

}
i k CF̃ (k, s).

Using �(k′′)=�(−k′′) and the expression for L2 brings us to the
desired

(
∼∗)= ikK(k, s)CF̃ (k, s).
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